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Abstract. It is shown that applicability of standard high-temperature expansions in multifractal
thermodynamics is restricted by complex-temperature singularities. An analytic continuation
method (finite-temperature expansions) has been developed to improve the analytic expansions
approach. The quantum intermittency is then used as an example of applicability of the finite-
temperature expansion.

It is well known that linear approximation of the generalized fractal dimensionsDq (or
parabolic approximation of thef (α) distribution) is generally applicable in a narrow vicinity
of q = 0 only (see, for instance [1, 2] and references therein). On the other hand, a
quantitative description of multifractals beyond the linear approximation is now actually
due to the possibility of obtaining rather accurate numerical data for different physical
systems. In particular, quantum intermittency has recently [3–9] been intensively studied
beyond the linear approximation. In this letter we will show that the concept of analytical
continuation of standard thermodynamic quantities on a complex plane can be adapted in the
context of multifractal measures. This adaptation should then provide an improvement of the
standard linear approximation of the generalized dimensionsDq . We then apply this finite-
temperature (FT) approximation (formulae (14) and (21)) to a model (Baker transformation)
whereDq are known analytically and where the complete analytical continuation can be
calculated and shown to be better than the high-temperature expansion (formula (10)) in a
certain range of values ofq (figure 1). We also use results of recent numerical simulations
[7, 8] of the quantum intermittency as an example of applicability of the FT-approximation
to real physical systems.

For quantum systems the generalized dimensions spectrum can be defined as follows [7]

Dq = lim
l→0

lnZ(q)

(q − 1) ln l
(1)

where the partition function

Z(q) =
∑
i

µ
q

i (2)

and the interval [0, 2π ] is partitioned into small intervals of sizel, theith of which receives
a weightµi from the spectral measure (the spectrum in that case is the whole unit circle).
This means that in the limitl→ 0 the partition functionZ(q, l) behaves as a power law

Z(q) ∼ lτ (q)
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Figure 1. Generalized dimensionsDq againstq for a strange attractor of the Baker map. The
brokenstraight line is drawn for comparison with the high-temperature (linear) approximation
(10), the full curve corresponds to the first-order approximation of the FT expansion (21) and
the dots correspond to analytical computations.

where

τ(q) = Dq(q − 1). (3)

On the other hand the partition function can be represented as follows [10]

Z(q) '
∫
ρ(α)lqα−f (α) dα (4)

whereα represents the singularity strength of the measureµ andf (α)-singularity spectrum
describes the statistical distribution of the singularity exponentα. If we cover the support
of the measureµ with balls of sizel, the number of such balls that scale likelα, for a given
α, behaves likeNα(l) ∼ l−f (α). In the limit l → 0, the sum (4) is dominated by the term
lminα(qα−f (α)). Then from the definition ofτ(q), one obtains

τ(q) = min
α
(qα − f (α)). (5)

Thus, theτ(q) is obtained by Legendre transforming thef (α). Whenf (α) and τ(q) are
smooth functions, relationship (5) can be rewritten in the following way

τ(q) = qα − f (α) df

dα
= q. (6)

The thermodynamics interpretation of these relationships means thatq can be interpreted
as an inverse temperatureq = T −1 and the limitl → 0 can be seen as the thermodynamic
limit of infinite volume (V = ln 1/l → ∞). Then by identifyingαi = lnµi/ ln(1/l) to
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the energyEi (per unit of volume) of a microstatei, one can rewrite the partition function
under the familiar form

Z(q) =
∑
i

exp(−qEi). (7)

From the definition:f (α) = lnNα(l)/ ln(1/l), the singularity spectrumf (α) plays the role
of the entropy (per unit of volume).

Expansion of the entropyf (α(q)) in power series (the high-temperature expansion)

f (q) = f (0)+ q
(

df

dq

)
q=0

+ q2 1

2

(
d2f

dq2

)
q=0

+ · · · (8)

in the first-order approximation is

f (q) ' f (0)+ q2 1

2

(
d2f

dq2

)
(9)

since generally(df/dq)q=0 = 0 (see (6)).
The generalized dimensions spectrum corresponding to (9) is (see, for instance, [4] and

references therein)

Dq ' D0+ aq (10)

wherea is some constant.
It is known that entropy can have singularities in the complex temperature plane (see, for

instance [11–13] and references therein). If the multifractal entropyf (q) has singularities on
the complexq-plane, then the radius of convergence of thereal Maclaurin series expansion
(8) is determined by the distance from the pointq = 0 to a nearest singularity off (q) on
the complex plane. One could then use the standard procedure of analytic continuation to
obtain power series expansions beyond the circle of convergence of the expansion (8)

f (q) = f (±|q0|)+ (q ∓ |q0|)
(

df

dq

)
q=±|q0|

+ (q ∓ |q0|)2 1

2

(
d2f

dq2

)
q=±|q0|

+ · · · (11)

where|q0| is the modulus of the nearest to pointq = 0 complex-temperature singularity and
we introduce indexes(±) to distinguish between caseq > 0− (+) and caseq < 0− (−).

Let us rewrite (11) in a form similar to (8)

f (q) = A(±) + B(±)q + · · · (12)

where

A(±) = f (±|q0|)∓ |q0|
(

df

dq

)
q=±|q0|

B(±) =
(

df

dq

)
q=±|q0|

. (13)

Using (6) it is easy to show thatτ(q) corresponding to (12) has the following form

τ (±)q = −A(±) + (C(±) − B(±))q + B(±)q ln |q| + · · · (14)

whereC(±) are some constants. One can see that an additional ‘logorithmic’ term appears
in the FT-expansion (14). Ana priori reason for the ‘logorithmic’ term could be related to
so-called dimension invariance [14].

Along the circle|q| = 1 (on the complex plane) this ‘logarithmic’ term is absent and
the FT-expansion (14) takes a Maclaurin-like form

τ (±)q = −A(±) + (C(±) − B(±))q + · · · . (15)

One can use this formal property to simplify the FT-expansion (14). Indeed, if: (a) there
exists a segment of the circle|q| = 1 which belongs to both(+) and (−) circles of
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convergence and (b)τq is fixed by the first two terms of expansions (15) with sufficient
accuracy along this segment, then the two expansions (15) ((+) and (−) cases) can be
considered as Maclaurin-like expansions of thesameanalytic function. Therefore

A(+) = A(−) = A (16)

C(+) − B(+) = C(−) − B(−). (17)

Using the conditionτ(1) = 0 (see (3)) we obtain from (15)

A(+) = C(+) − B(+) (18)

and then using (16)–(18) we can rewrite (14) as follows

τq = A(q − 1)+ B(±)q ln |q| + · · · . (19)

If such a segment of circle|q| = 1 does not exist for a considered multifractal, then one
should use the general form, (14), of the FT-expansion. As we shall show below, the data
obtained in numerical simulations of some interesting physical systems are well fitted by
the simplified form (19).

It follows from (3) and (19) that

Dq = A+ B(±) q ln |q|
(q − 1)

+ · · · . (20)

Using (20) atq = −1 we obtainA = D−1, and then finally

Dq ' D−1+ B(±) q ln |q|
(q − 1)

. (21)

Approximation (21) is obviously wrong in a narrow vicinity of the pointq = 0 since it
givesD0 = D−1, which is almost never the case for a multifractal. Thus, in the case when
point q = 0 belongs to the circles of convergence of the FT-expansions one should take
into account more than the first two terms of the FT-expansions (11) to obtain an accurate
representation off (q) (and, consequently,Dq) in the narrow vicinity of the pointq = 0.
Below we shall show that outside the narrow vicinity of the pointq = 0 these first two terms
can give a good approximation of the generalized dimensionsDq in some representative
interval of the inverse temperatureq (both for q > 0 andq < 0).

To show this let us start from the multifractality of a strange attractor of the Baker map
for which analytical results are available. This transformation is defined as

[xn+1, yn+1] = [l1xn, yn/η] yn < η

[xn+1, yn+1] = [ 1
2 + l2xn, (yn − η)/(1− η)] yn > η.

(22)

The attractor of this map consists of an infinite number of lines in they direction which
intersect a horizontal line in two interwoven Cantor sets. These sets are characterized by
contraction ratesl1 and l2, and are visited with probabilityη and 1− η, respectively. The
dimension spectrumDq of the cross section follows from

ηq

l
(q−1)Dq
1

+ (1− η)
q

l
(q−1)Dq
2

= 1. (23)

If we introduce definitionsηq = a, (1− η)q = b, l
(q−1)Dq
2 = G and lnl1/ ln l2 = k, then we

can rewrite (23) as

Gk − bG(k−1) − a = 0. (24)



Letter to the Editor L143

From this eqution one obtains

dG

dq
= da/dq + (db/dq)G(k−1)

kG(k−1) − b(k − 1)G(k−2)
.

dG/dq has a singularity whenG = b(k − 1)/k. Substituting this relationship into (24) we
obtain values ofq for which dG/dq is singular

q0 = ln c

ln[η/(1− η)k] (25)

where

c = − (k − 1)(k−1)

kk
. (26)

Since

f (q) = Dq + q(q − 1)
dDq

dq
(27)

entropyf (q) of the Baker map also has singularities at the same values ofq = q0.
The constantc is positive when(k−1) = −1/n, wheren = 3, 5, 7 . . . . For these specific

values ofk corresponding values ofq0 are real numbers and, dG/dq (and, consequently,
f (q)) has singularities on the real axis. In the general case, however, the values ofq0 are
complex.

Let us consider an example with concrete values ofη = 0.6, l1 = 0.25 andl2 = 0.4.
For this case we obtain from (25) and (26) the complex value ofq0 ' −1.1 + i3.6
and, consequently|q0| ' 3.8. This is the radius of convergence of the high-temperature
expansion (8) for the Baker map. Corresponding radii of convergence of the finite-
temperature expansions (11) areR(+) ' 5.8 and R(−) ' 4.1, so that the interval of
applicability of the FT-expansion is approximately−8 < q < 10. For the first-order
approximation we should exclude a narrow vicinity of the pointq = 0 from this interval.
Figure 1 shows a set of valuesDq for this situation. The broken straight line in this figure
corresponds to the high-temperature expansion (10) whereas the full curve corresponds to
the FT-expansion (21) (dots correspond to analytical results). One can see good agreement
with approximation (21) for 0.5< q < 7 and−7< q < −0.5.

Let us apply this approach to some quantum systems with multifractal energy spectra.
Figure 2 (adapted from [7]) shows the generalized dimensions spectrumDq for multifractal
data (dots) obtained in a recent numerical simulation of a quasiperiodically driven spin-
1
2 system with a singular continuous spectrum. In this figure we showDq against
q ln |q|/(q − 1) andDq againstq (the latter case is shown in the inset figure). Full lines
in both of these figures are drawn for comparison with FT-approximation (21). In the main
figure the upperstraight line indicates agreement with (21) forq < 0 whereas the lower
straight line indicates agreement with (21) forq > 0. In the inset figure the broken straight
line is drawn for comparison with the high-temperature approximation (10) (the full curve
in the inset figure corresponds to (21)).

To apply this approach to the quantum pseudo-diffusion let us recall some definitions.
If the wavepacket is initially localized withψn = δn0 at timet = 0, thepth time-dependent
displacement moment of the wavepacket might be expected to grow as

〈rq〉 = 6n|n|q |ψn(t)|2 ∼ tqβ(q)
wheren measures the displacement. Ifβ(p) does not equal a constant then this generalized
diffusion law corresponds to intermittent behaviour of the quantum systems [6–8]. In [8]
relationship

β(q) = D1−q (28)
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Figure 2. Generalized dimensionsDq for a quasiperiodically driven spin-1
2 system with singular

continuous spectrum. The dots are results of numerical simulation performed in [7] and full
lines are drawn for comparison with the FT-approximation (21) (see text for more detail).

Figure 3. Pseudo-diffusion exponentβ(q) against (q−1) ln |1−q|
q

for q = 2, . . . ,10. The data
(dots) are taken from [8] for irrationalω = [0, 4]. The full straight line is drawn for comparison
with (29).

is suggested for the quasiperiodic quantum systems with singular continuous spectrum. If
we substituteDq given by (21) into (28) we obtain

β(q) ' D−1+ B(−) (q − 1) ln |1− q|
q

(29)

for q > 2 (it should be noted thatq > 2 in (29) corresponds toq < −1 in (21)). The
author of [8] supports relationship (28) by numerical results obtained for the Harper model
in the critical regime. This is a Schrödinger equation with hopping amplitudeti,i+1 = −1
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and on-site potentialvi = 2 cos(2πωi + φ) whereω is an irrational andφ is an arbitrary
phase. For this model, the exponentβ(q) was computed in [8] using wavepackets evolution.
Results of these calculations (dots) are shown in figure 3 (adapted from [8] forω = [0, 4]).
The axes in this figure are chosen for comparison with FT-approximation (29). One can
see good agreement between data (dots) and FT-approximation (29) (straight line).

We use these numerical results as an illustrative example only. Therefore, we do
not investigate them in detail. On the other hand, the method developed in this letter
seems independent of the physical systems where the multifractal appears. It appears
that this method could therefore be applied in principle to a wide range of physical
systems. Obtaining limits of validity of this method is an interesting open problem for
future investigations.

The author is grateful to the referee for constructive comments, information and suggestions.
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